## Homogeneous and Heterogeneous Hydrogenation: a Kinetic Correlation

By I. Jardine and F. J. McQuillin\*

(School of Chemistry, The University of Newcastle upon Tyne, NE1 7RU)

Summary Hydrogen transfer is rate-limiting in homogeneous hydrogenation of cycloalkenes by [py<sub>2</sub>(dmf)-RhCl<sub>2</sub>(BH<sub>4</sub>)] in dimethylformamide (dmf) solution, as in heterogeneous hydrogenation.

HETEROGENEOUS hydrogenation of cycloalkenes, e.g. at Pd-C, is typically zero order in the alkene with hydrogentransfer as the rate-limiting step. By contrast, the homogeneous hydrogenation of a group of cycloalkenes using

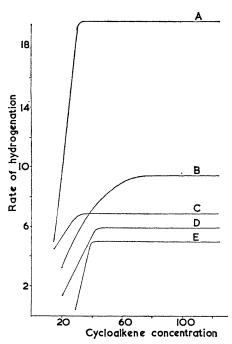



FIGURE 1. Rates of hydrogenation (c.c./min.) vs. concentration  $10^{-2}$ M) with [py<sub>3</sub>RhCl<sub>2</sub>] (3·7 ×  $10^{-3}$ M) and NaBH<sub>4</sub> (22·0 ×  $10^{-3}$ M) in dmf (12 c.c.): (A) norbornene, (B) cyclohexene, (C) cycloheptene, (D) cyclopentene and (E) cyclo-octene.

[(PPh<sub>3</sub>)<sub>3</sub>RuCl<sub>2</sub>] is concentration-dependent, and the relative rates for different cycloalkenes reflect the complexing

constant of the olefin.<sup>2</sup> We were therefore interested to find that homogeneous hydrogenation of a group of cycloalkenes using the complex<sup>3</sup> [py<sub>2</sub>(dmf)RhCl<sub>2</sub>(BH<sub>4</sub>)] in dimethylformamide (dmf) solution reproduces the type of rate vs. concentration relation (cf. Figure 1) found<sup>1</sup> in heterogeneous

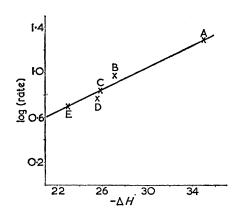
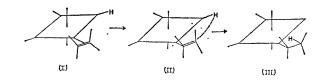




FIGURE 2. Relationship between log (rate of hydrogenation) and heat of hydrogenation (kcal./mole): (A) norbornene, (B) cyclohexene, (C) cyclo-heptene, (D) cyclopentene and (E) cyclo-octene.

hydrogenation, and the same rate order, viz.: norbornene cyclohexene > cycloheptene > cyclopentene > cyclopentene > cyclopentene. Significantly, in the higher concentration range,



where hydrogen-transfer is clearly rate-limiting, log rate vs. heat of hydrogenation is found to be linear (cf. Figure 2). We infer that the transition state for hydrogenation is

alkene-like, as in (II), and hence the energetics of the  $sp^2 \rightarrow sp^3$  transformation controls the activation energy. We regard these results as important in completing the bridge between heterogeneous and homogeneous catalysis.

(Received, March 24th, 1969; Com. 413.)

- I. Jardine and F. J. McQuillin, J. Chem. Soc. (C), 1966, 458.
  I. Jardine and F. J. McQuillin, Tetrahedron Letters, 1968, 5189.
  I. Jardine and F. J. McQuillin, Chem. Comm., 1969,